Patricia Mazón, Rafael Chinchilla, Carmen Nájera,* Gabriela Guillena, Rob Kreiter, Robertus J. M. Klein Gebbink and Gerard van Koten*

N-[3,5-Di(benzyloxy)benzyl]cinchonidinium bromide

Tetrahedron: Asymmetry 13 (2002) 2181

Mp 215°C $[\alpha]_D^{25} = -160$ (c 1, CHCl₃) Source of chirality: (-)-cinchonidine

Patricia Mazón, Rafael Chinchilla, Carmen Nájera,* Gabriela Guillena, Rob Kreiter, Robertus J. M. Klein Gebbink

and Gerard van Koten*

OBn OBn C43H45BrN2O3

O(9)-Allyl-N-(3,5-dimethoxybenzyl)cinchonidinium bromide

Tetrahedron: Asymmetry 13 (2002) 2181

Mp 164°C $[\alpha]_D^{25} = -136 \ (c \ 1, \ CHCl_3)$ Source of chirality: (-)-cinchonidine

Patricia Mazón, Rafael Chinchilla, Carmen Nájera,* Gabriela Guillena, Rob Kreiter, Robertus J. M. Klein Gebbink and Gerard van Koten*

and Gerard van Koten*

Mp 154°C $[\alpha]_D^{25} = -60 \ (c \ 1, \ CHCl_3)$ Source of chirality: (-)-cinchonidine

 $C_{47}H_{47}BrN_2O_3$ O(9)-Benzyl-N-(3,5-dimethoxybenzyl)cinchonidinium bromide

Patricia Mazón, Rafael Chinchilla, Carmen Nájera,*

Gabriela Guillena, Rob Kreiter, Robertus J. M. Klein Gebbink

Tetrahedron: Asymmetry 13 (2002) 2181

Mp 203°C $[\alpha]_{D}^{25} = -201$ (c 1, CHCl₃) Source of chirality: (-)-cinchonidine

Br OMe

 $C_{28}H_{33}BrN_2O_3$ N-(3,5-Dimethoxybenzyl)cinchonidinium bromide

 $C_{15}H_{18}O_2 \label{eq:c15}$ Methyl (4-phenylcyclohexylidene) acetate

Wei-Min Dai,* Anxin Wu and Huafeng Wu

CO₂Me

Tetrahedron: Asymmetry 13 (2002) 2187

Ee = 33.5% $[\alpha]_{D}^{20} = -21.1$ (*c* 0.64, CHCl₃) Source of chirality: asymmetric synthesis (Wittig) Absolute configuration: *R*

 $C_{10}H_{16}O_2 \label{eq:c10}$ Methyl (4-methylcyclohexylidene)acetate

Me▪

Tetrahedron: Asymmetry 13 (2002) 2187

tBu $C_{13}H_{22}O_2$ CO_2Me

Methyl (4-*tert*-butylcyclohexylidene)acetate

Wei-Min Dai,* Anxin Wu and Huafeng Wu

Ee = 40.0% $[\alpha]_D^{20} = -26.5$ (c 0.51, CHCl₃) Source of chirality: asymmetric synthesis (Wittig) Absolute configuration: R

Tetrahedron: Asymmetry 13 (2002) 2187

 $[\alpha]_{D}^{20} = -24.7$ (c 1.21, CHCl₃) Source of chirality: asymmetric synthesis (Wittig) Absolute configuration: R

Ee = 39.2%

Claudia Neri and Jonathan M. J. Williams* E.e. >99% (by HPLC) $[\alpha]_{D}^{30} = +25.0 \ (c \ 0.08, \ CHCl_{3})$ Source of chirality: lipase-catalysed kinetic resolution Absolute configuration: R BnO C11H13NO3 (R)-(+)-4-Benzyloxymethyl-2-oxazolidinone

Claudia Neri and Jonathan M. J. Williams*

Fabienne Segat-Dioury and Laurence A. Mulard*

NHAC

ORn

OBn

Tetrahedron: Asymmetry 13 (2002) 2197

E.e. >98% (by HPLC) $[\alpha]_{D}^{30} = -40.7 \ (c \ 1.35, \ CHCl_{3})$ Source of chirality: lipase-catalysed kinetic resolution Absolute configuration: S

C₆H₉NO₄ (S)-(-)-4-Acetoxymethyl-2-oxazolidinone

OAc

C44H59NO17

Tetrahedron: Asymmetry 13 (2002) 2211

 $[\alpha]_{D} = -15$ (c 1.0, chloroform) Source of chirality: L-rhamnose, D-glucosamine, glycosylation Absolute configuration of the anomeric centers assigned by NMR spectroscopy

 $Methyl (2,3,4-tri-O-acetyl-\alpha-L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(1 \rightarrow 3)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-dooxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-dooxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-dooxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl-2-dooxy-4,6-O-isopropylidene-\beta-2-dooxy-4,6-O-isopropylidene-\beta-2-dooxy-4,6-O-isopropylidene-\beta-2-dooxy-4,6-O-isopropylidene-\beta-2-dooxy-4,6-O-isopropylidene-\beta-2-dooxy-4,6-O-isopropylidene-\beta-2-dooxy-4,0-0-isopropylidene-\beta-2-dooxy-4,0-0-isopropylidene-3-(2-acetamido-2-dooxy-4,0-0-isopropylidene-3,0-0-isopropylidene-3,0-0-isopropylidene-3,0-0-isopr$ $(1\rightarrow 2)$ -3,4-di-*O*-benzyl- α -L-rhamnopyranoside

Tetrahedron: Asymmetry 13 (2002) 2197

D-glucosamine, glycosylation Absolute configuration of the anomeric centers assigned by NMR spectroscopy

 $\begin{array}{l} Methyl \ (2,3,4,6-tetra-{\it O}-benzyl-\alpha-D-glucopyranosyl)-(1\rightarrow 4)-(2,3-di-{\it O}-benzoyl-\alpha-L-rhamnopyranosyl)-(1\rightarrow 3)-(2-acetamido-2-deoxy-4,6-{\it O}-isopropylidene-\beta-D-glucopyranosyl)-(1\rightarrow 2)-3,4-di-{\it O}-benzyl-\alpha-L-rhamnopyranoside (1\rightarrow 3)-(2-acetamido-2-deoxy-4,6-{\it O}-isopropylidene-\beta-D-glucopyranosyl)-(1\rightarrow 2)-3,4-di-{\it O}-benzyl-\alpha-L-rhamnopyranoside (1\rightarrow 3)-(2-acetamido-2-deoxy-4,6-{\it O}-isopropylidene-\beta-D-glucopyranosyl)-(1\rightarrow 2)-3,4-di-{\it O}-benzyl-\alpha-L-rhamnopyranosyl)-(1\rightarrow 3)-(2-acetamido-2-deoxy-4,6-{\it O}-isopropylidene-\beta-D-glucopyranosyl)-(1\rightarrow 2)-3,4-di-{\it O}-benzyl-\alpha-L-rhamnopyranosyl)-(1\rightarrow 3)-(2-acetamido-2-deoxy-4,6-{\it O}-isopropylidene-\beta-D-glucopyranosyl)-(1\rightarrow 2)-3,4-di-{\it O}-benzyl-\alpha-L-rhamnopyranosyl)-(1\rightarrow 3)-(2-acetamido-2-deoxy-4,6-{\it O}-isopropylidene-\beta-D-glucopyranosyl)-(1\rightarrow 3)-(2-acetamido-2-deoxy-4,6-{\it O}-isopropylidene-\beta-D-glucopyranosyl)-(2-acetamido-2-deoxy-4,6-{\it O}-isopropyranosyl)-(2-acetamido-2-deoxy-4,6-{\it O}-isopropyranosyl)-(2-acetamido-2-deoxy$

 $(1 \rightarrow 3)$ - $(2 - acetamido - 2 - deoxy - \beta - D - glucopyranosyl)$ - $(1 \rightarrow 2)$ -3, 4-di-O-benzyl- α -L-rhamnopyranoside

BnC

C86H95NO21

Bn

 $Methyl (3,4-di-O-benzyl-\alpha-L-rhamnopyranosyl)-(1 \rightarrow 3)-[2,3,4,6-tetra-O-benzyl-\alpha-D-glucopyranosyl-(1 \rightarrow 4)]-\alpha-L-rhamnopyranosyl-(1 \rightarrow 3)-(2-acetamido-2-deoxy-4,6-O-isopropylidene-\beta-D-glucopyranosyl)-(1 \rightarrow 2)-3,4-di-O-benzyl-\alpha-L-rhamnopyranoside$

4-(3'-O-Benzyl-1',2'-O-isopropylidene-α-D-xylo-tetros-4-yl)-2-phenyl-(3aR,4S,7aR)-tetrahydro-iso-indole-1,3-dione

A451

Sławomir Jarosz,* Katarzyna Szewczyk, Stanisław Skóra, Zbigniew Ciunik and Agnieszka Pietrzak

Tetrahedron: Asymmetry 13 (2002) 2223

 $[\alpha]_D$ 82.2 (*c* 1.4, CHCl₃) Source of chirality: chiral pool Absolute configuration: 3aR, 4S, 7aR

4-(Methyl 2',3'-di-O-benzyl-β-L-arabino-tetrosid-4-yl)-2-phenyl-(3aR,4S,7aR)-tetrahydro-iso-indole-1,3-dione

Mp=138.3°C (from EtOAc) $[\alpha]_{\rm D}^{22} = -29.6 \ (c \ 2, \ {\rm H_2O})$

Mohamed Amedjkouh* and Per Ahlberg ö ċно C10H16N2O2 (S)-2-(Pyrrolidine-1-carbonyl)-pyrrolidine-1-carbaldehyde

.Ph

Ω

н

 $C_{12}H_{14}N_2O_2$

 \cap

5-oxo-Pyrrolidine-(2S)-carboxylic acid benzylamide

Tetrahedron: Asymmetry 13 (2002) 2229

 $[\alpha]_{\rm D}^{21} = -79$ (*c* 2, EtOH)

Tetrahedron: Asymmetry 13 (2002) 2229 Mohamed Amedjkouh* and Per Ahlberg Mp=153°C (from EtOAc) $[\alpha]_{D}^{20} = +103.5 \ (c \ 1.7, \ H_{2}O)$ ullPh Н

 $C_{13}H_{16}N_2O_2$ 5-oxo-Pyrrolidine-(2S)-carboxylic acid-(R)-phenylethylamide

Bp = 30° C/7.6×10⁻² mmHg [α]_D²⁰ = +8.9 (*c* 2.4, EtOH)

 $C_9H_{18}N_2$ (S)-(1-Pyrrolidinylmethyl)pyrrolidine

Mohamed Amedjkouh* and Per Ahlberg $\overbrace{N}_{C_{10}H_{20}N_{2}}$ (*S*)-2-(1-Piperidinylmethyl)pyrrolidine

Mohamed Amedjkouh* and Per Ahlberg

Ph

Tetrahedron: Asymmetry 13 (2002) 2229

Kugelrohr distillation, 110°C/7.6 mmHg $[\alpha]_D^{21} = +15$ (c 7.75, EtOH)

Tetrahedron: Asymmetry 13 (2002) 2229

Kugelrohr distillation, bp: $120^{\circ}C/5 \times 10^{-2}$ mmHg [α]_D²⁰=+15.6 (c 1.01, EtOH)

н

| C₁₁H₂₂N₂ (S)-N-Methyl-2-(1-piperidinylmethyl)pyrrolidine

Joakim Oxelbark* and Sofia Claeson

Tetrahedron: Asymmetry 13 (2002) 2235

 $[\alpha]^{589} = -69$ (c 0.26, dioxane) Source of chirality: (*R*,*R*)-tartaric acid

 $\label{eq:C44} C_{44}H_{44}N_2O_6$ (R,R)-N-Propyl-N'-3(1-pyrenyl)propyl-O,O'-bis(dimethylbenzoyl)tartaramide

 $[\alpha]_{D}^{20} = +51.2$ (*c* 1.01, methanol) Source of chirality: asymmetric synthesis Absolute configuration: αR , 1*S*, 2*S*

 $C_{22}H_{27}N_3O_2$ *trans-(\alpha R, 1S, 2S)-2-Benzoylamino-1-(1-phenylethylamino)cyclohexanecarboxamide*

Kamalesh P. Pai Fondekar, Franz-J. Volk, S. M. Khaliq-uz-Zaman, Philippe Bisel and August W. Frahm*	Tetrahedron: Asymmetry 13 (2002) 2241
$\begin{array}{c} O \\ & & \\ &$	$_{\rm D}^{20}$ = +7.4 (<i>c</i> 0.76, methanol) urce of chirality: asymmetric synthesis osolute configuration: 1 <i>S</i> ,2 <i>R</i>
<i>cis</i> -(1 <i>S</i> ,2 <i>R</i>)-1-Amino-2-benzoylaminocyclohexanecarboxamide hydrochloride	

Kamalesh P. Pai Fondekar, Franz-J. Volk, S. M. Khaliq-uz-Zaman, Philippe Bisel and August W. Frahm*

Tetrahedron: Asymmetry 13 (2002) 2241

 $[\alpha]_{D}^{20} = -8.0 \ (c \ 1.01, \ H_2O)$ Source of chirality: asymmetric synthesis Absolute configuration: 1S,2S

 NH_2 $C_7H_{14}N_2O_2$ *trans-*(1*S*,2*S*)-1,2-Diaminocyclohexanecarboxylic acid

Yu-wu Zhong, Xin-sheng Lei and Guo-qiang Lin*

NH,

۰CO,H

Tetrahedron: Asymmetry 13 (2002) 2251

 $[\alpha]_D^{20} = +53.1$ (*c* 1.40, CHCl₃) Source of chirality: enzymatic resolution Absolute configuration: 1*S*,2*S*,5*S*,6*S*

 $\label{eq:C28} C_{28}H_{28}N_2O_2$ (1*S*,2*S*,5*S*,6*S*)-2,6-Di-(quinolin-2-ylmethyl)-bicyclo[3.3.0]octan-2,6-diol

Yu-wu Zhong, Xin-sheng Lei and Guo-qiang Lin* Tetrahedron: Asymmetry 13 (2002) 2251 $[x]_D^{20} = +147.6 (c \ 0.65, CHCl_3)$ Source of chirality: enzymatic resolution Absolute configuration: 1*S*,5*S*,6*S* (1*S*,5*S*,6*S*)-6-Hydroxy-6-(quinolin-2-ylmethyl)-bicyclo[3.3.0]octan-2-one

Yu-wu Zhong, Xin-sheng Lei and Guo-qiang Lin* $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = -26.2 \ (c \ 1.10, CHCl_3) \\ Source \ of \ chirality: \ enzymatic \ resolution \\ Absolute \ configuration: \ 1R,5R,6R \end{bmatrix}$

(1R,5R,6R)-6-Hydroxy-6-(methylpyridin-2-ylmethyl)-bicyclo[3.3.0]octan-2-one ethylene ketal

Yu-wu Zhong, Xin-sheng Lei and Guo-qiang Lin*

Yu-wu Zhong, Xin-sheng Lei and Guo-qiang Lin*

Tetrahedron: Asymmetry 13 (2002) 2251

 $[\alpha]_{D}^{20} = -14.6$ (*c* 0.85, CHCl₃) Source of chirality: enzymatic resolution Absolute configuration: 1R, 5R, 6R

 $\label{eq:C20} C_{20}H_{23}NO_3$ (1R,5R,6R)-6-Hydroxy-6-(quinolin-2-ylmethyl)-bicyclo[3.3.0]octan-2-one ethylene ketal

Tetrahedron: Asymmetry 13 (2002) 2251

$$\begin{split} & [\alpha]_{\rm D}^{20} = -145.7 \ (c \ 2.45, \ {\rm CHCl_3}) \\ & {\rm Source \ of \ chirality: \ enzymatic \ resolution} \\ & {\rm Absolute \ configuration: \ } 1R, 5R, 6R \end{split}$$

C₁₅H₁₉NO₂ (1*R*,5*R*,6*R*)-6-Hydroxy-6-(methylpyridin-2-ylmethyl)-bicyclo[3.3.0]octan-2-one

Dawei Ma,* Xiaotao Pu and Jinyi Wang $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = -14.4 \ (c \ 1.3, \ CHCl_3) \\ Source \ of \ chirality: \ lithium \ (R)-\alpha-methylbenzylamide \\ Absolute \ configuration: \ R \\ \underbrace{\mathsf{NH}_2 \ \mathsf{OH}}_{C_8 \mathsf{H}_{19} \mathsf{NO}} \\ (R)-3-Aminooctanol \\ \end{bmatrix}$ Dawei Ma,* Xiaotao Pu and Jinyi Wang

Tetrahedron: Asymmetry 13 (2002) 2257

 $[\alpha]_D^{20} = +8.9$ (c 2.6, CHCl₃) Source of chirality: lithium (*R*)- α -methylbenzylamide Absolute configuration: *R*

 $C_{23}H_{37}NO_4$ (E)-3-(N-(R)-1'-Hydroxy-3'-octyl)amino-1-benzoxylhexenoic acid ethyl ester

Dawei Ma,* Xiaotao Pu and Jinyi Wang Tetrahedron: Asymmetry 13 (2002) 2257 $[\alpha]_{D}^{20} = -11 (c \ 0.97, CHCl_3)$ Source of chirality: (R)- α -methylbenzylamide Absolute configuration: 1S,2S,6R (1S,2S,6R)-1-(3-Hydroxypropyl)-2-ethoxycarbonyl-6-pentyl-piperidine

Dawei Ma,* Xiaotao Pu and Jinyi Wang Tetrahedron: Asymmetry 13 (2002) 2257 $[\alpha]_D^{20} = -31.5 (c \ 0.25, CHCl_3)$ Source of chirality: lithium (R)- α -methylbenzylamide Absolute configuration: 5R,8S,8aS (5R,8S,8aS)-5-Pentyloctahydroindolizidine-8-carboxylic acid, ethyl ester

Diethyl 1-[formyl(1'-methylbenzyl)amino]-2-methyl-cyclopropanephosphonate

E.e. >98% (by GC on chiral column) $[\alpha]_{D}^{20}$ +118.7 (*c* 1, CHCl₃) ³¹P NMR (CDCl₃): δ = 22.50 ppm Source of chirality: (*S*)-(1-phenyl)ethylamine Absolute configuration: (1*R*,2*R*,1'*S*)

 $C_{19}H_{30}NO_4P \label{eq:c19}$ Diisopropyl 1-[formyl(1'-methylbenzyl)amino]-2-methyl-cyclopropanephosphonate

Nicolas Tesson, Benoist Dorigneux and Antoine Fadel*		Tetrahedron: Asymmetry 13 (2002) 2267
$C_8H_{18}NO_3P$ Diethyl 1-amino-2-methyl-cyclopropanephosphonate	E.e. $[\alpha]_{D}^{2c}$ ³¹ P Soun prec Abso	>99% (by GC on chiral column) P +24.4 (c 1, CHCl ₃) NMR (CDCl ₃): δ = 29.28 ppm rce of chirality: (S)-(1-phenyl)ethylamine for the ursor olute configuration: (1S,2S) by comparison with literature

Marco Pallavicini,* Cristiano Bolchi, Laura Fumagalli, Ermanno Valoti and Luigi Villa

NH₂

NH₂

C₉H₁₃N (S)-1-Phenyl-2-propylamine

 $C_{12}H_{13}N$ (*R*)-1-(1-Naphthyl)ethylamine

Tetrahedron: Asymmetry 13 (2002) 2277

E.e. = 97.0% $[\alpha]_D^{20} = +53.5$ (*c* 2, ethanol) Source of chirality: chemical resolution with 3-carboxy-2-naphthoate of (*R*)-isopropylidene glycerol Absolute configuration: *R*

Marco Pallavicini,* Cristiano Bolchi, Laura Fumagalli, Ermanno Valoti and Luigi Villa Tetrahedron: Asymmetry 13 (2002) 2277

E.e. = 78.0% $[\alpha]_{D}^{20} = +30.5$ (*c* 1.8, benzene) Source of chirality: chemical resolution with 3-carboxy-2-naphthoate of (*R*)-isopropylidene glycerol Absolute configuration: *S*

Marco Pallavicini,* Cristiano Bolchi, Laura Fumagalli, Ermanno Valoti and Luigi Villa

"//NH₂

C₈H₁₀BrN (S)-1-(4-Bromophenyl)ethylamine

Tetrahedron: Asymmetry 13 (2002) 2277

E.e. >99.5%

 $[\alpha]_D^{20} = -21.0$ (*c* 2.8, methanol) Source of chirality: chemical resolution with 3-carboxy-2-naphthoate of (R)-isopropylidene glycerol Absolute configuration: *S* Marco Pallavicini,* Cristiano Bolchi, Laura Fumagalli, Ermanno Valoti and Luigi Villa $\underbrace{Tetrahedron: Asymmetry 13 (2002) 2277}_{E.e. = 94.1\%}$ $[\alpha]_{D}^{20} = +3.8 (neat)$ Source of chirality: chemical resolution with 3-carboxy-2-naphthoate of (*R*)-isopropylidene glycerol Absolute configuration: *S*

Marco Pallavicini,* Cristiano Bolchi, Laura Fumagalli, Ermanno Valoti and Luigi Villa

$$\left[\begin{array}{c} & & \\ &$$

 $C_{16}H_{22}N_4O_8S$ (*R*)-1-(4-Nitrophenyl)ethylamine sulphate E.e. = 98.9%

Tetrahedron: Asymmetry 13 (2002) 2277

 $[\alpha]_D^{20} = +6.6$ (*c* 1.07, 0.05 M NaOH) Source of chirality: chemical resolution with 3-carboxy-2-naphthoate of (*R*)-isopropylidene glycerol Absolute configuration: *R*

Marco Pallavicini,* Cristiano Bolchi, Laura Fumagalli, Ermanno Valoti and Luigi Villa

Tetrahedron: Asymmetry 13 (2002) 2277

E.e. = 77.9% $[\alpha]_{D}^{20} = -2.6 \ (c \ 1.0, \ EtOH)$ Source of chirality: chemical resolution with 3-carboxy-2-naphthoate of (*R*)-isopropylidene glycerol Absolute configuration: *S*

Marco Pallavicini,* Cristiano Bolchi, Laura Fumagalli, Ermanno Valoti and Luigi Villa

NH₂

 $C_{12}H_{13}N$ (*R*)-1-(2-Naphthyl)ethylamine

NH₂

 $C_4H_{12}ClN$ (S)-2-Butylamine hydrochloride

HCI

Tetrahedron: Asymmetry 13 (2002) 2277

E.e. = 94.4% $[\alpha]_D^{25} = +19.9$ (*c* 2.5, ethanol) Source of chirality: chemical resolution with 3-carboxy-2-naphthoate of (*R*)-isopropylidene glycerol Absolute configuration: *R*

Tetrahedron: Asymmetry 13 (2002) 2283 Masayuki Kirihara,* Masashi Kawasaki, Hiroki Katsumata, Hiroko Kakuda, Motoo Shiro and Shigeki Kawabata Ee = 88% $[\alpha]_{D}^{31} = -7.5$ (c 1.07, CHCl₃) Source of chirality: lipase-catalyzed resolution OH Absolute configuration: R NC C11H9F2NO (R)-1-(p-Cyanophenyl)-2,2-difluorobut-3-en-1-ol Tetrahedron: Asymmetry 13 (2002) 2283 Masayuki Kirihara,* Masashi Kawasaki, Hiroki Katsumata, Hiroko Kakuda, Motoo Shiro and Shigeki Kawabata Ee = 67% $[\alpha]_{D}^{25} = -8.2$ (c 1.05, CHCl₃) Source of chirality: lipase-catalyzed resolution Absolute configuration: S $C_{15}H_{24}F_2O_2$ (S)-4-Acetoxy-3,3-difluorotridec-1-ene Tetrahedron: Asymmetry 13 (2002) 2283 Masayuki Kirihara,* Masashi Kawasaki, Hiroki Katsumata, Hiroko Kakuda, Motoo Shiro and Shigeki Kawabata

 $C_{10}H_{16}F_2O$ (*R*)-1-Cyclohexyl-2,2-difluorobut-3-en-1-ol

Masayuki Kirihara,* Masashi Kawasaki, Hiroki Katsumata, Hiroko Kakuda, Motoo Shiro and Shigeki Kawabata Ee = 82% $[\alpha]_D^{25} = +19.7 (c \ 1.10, CHCl_3)$ Source of chirality: lipase-catalyzed resolution Absolute configuration: *R*

Ee = 95%

 $[\alpha]_{D}^{23} = +20.5 \ (c \ 1.09, \ \text{CHCl}_{3})$

Absolute configuration: R

Source of chirality: lipase-catalyzed resolution

(R)-3,3-Difluorotridec-1-en-4-ol

Tetrahedron: Asymmetry 13 (2002) 2283 Masayuki Kirihara,* Masashi Kawasaki, Hiroki Katsumata, Hiroko Kakuda, Motoo Shiro and Shigeki Kawabata Ee = 96% $[\alpha]_D^{24} = -14.3$ (c 1.13, CHCl₃) Source of chirality: lipase-catalyzed resolution Absolute configuration: R C₁₀H₉BrF₂O (R)-1-(p-Bromophenyl)-2,2-difluorobut-3-en-1-ol Tetrahedron: Asymmetry 13 (2002) 2283 Masayuki Kirihara,* Masashi Kawasaki, Hiroki Katsumata, Hiroko Kakuda, Motoo Shiro and Shigeki Kawabata Ee = 94% $[\alpha]_{D}^{23} = -20.2$ (c 1.01, CHCl₃) Source of chirality: lipase-catalyzed resolution Absolute configuration: R CH₃O $C_{11}H_{12}F_2O_2$ (R)-2,2-Difluoro-1-(p-methoxyphenyl)but-3-en-1-ol Tetrahedron: Asymmetry 13 (2002) 2283 Masayuki Kirihara,* Masashi Kawasaki, Hiroki Katsumata, Hiroko Kakuda, Motoo Shiro and Shigeki Kawabata Ee = 87% $[\alpha]_{D}^{25} = +5.3$ (c 1.03, CHCl₃) Source of chirality: lipase-catalyzed resolution Absolute configuration: S $C_{12}H_{18}F_2O_2$ (S)-4-Acetoxy-4-cyclohexyl-3,3-difluorobut-1-ene Tetrahedron: Asymmetry 13 (2002) 2283 Masayuki Kirihara,* Masashi Kawasaki, Hiroki Katsumata, Hiroko Kakuda, Motoo Shiro and Shigeki Kawabata

 $\label{eq:c12} C_{12}H_{11}BrF_2O_3$ (S)-4-Acetoxy-4-(p-bromophenyl)-3,3-difluorobut-1-ene

Ee = 97% $[\alpha]_{D}^{22}$ = +53.8 (*c* 1.21, CHCl₃) Source of chirality: lipase-catalyzed resolution Absolute configuration: *S*